COURSE INTRODUCTION AND APPLICATION INFORMATION


Course Name
Mechanics of Materials
Code
Semester
Theory
(hour/week)
Application/Lab
(hour/week)
Local Credits
ECTS
ME 208
Fall/Spring
2
2
3
5
Prerequisites
 ME 205To get a grade of at least FD
 ME 205To get a grade of at least FD
orCIVE 201To get a grade of at least FD
orCIVE 201To get a grade of at least FD
Course Language
English
Course Type
Elective
Course Level
First Cycle
Mode of Delivery -
Teaching Methods and Techniques of the Course
Course Coordinator
Course Lecturer(s)
Assistant(s)
Course Objectives The objective of this course is to introduce fundamentals of mechanics of materials, to teach the analysis of stress, and strain for simple and combined loadings and their use in mechanical design.
Learning Outcomes The students who succeeded in this course;
  • distinguish between two fundamental types of stress
  • calculate different types of stress resulting from inner actions
  • show the state of stress using Mohr’s circle
  • analyze the stability of columns
  • design mechanical components widely used in engineering structures utilizing differen failure hypotheses.
Course Description Concepts of stress and strain, material behavior, axial loading, thermal deformations, torsion, simple bending, unsymmetric bending, elastic curve, stability of columns, 2-D state of stress, states of deformation, strain energy, failure hypotheses, combined loadings.
Related Sustainable Development Goals

 



Course Category

Core Courses
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

 

WEEKLY SUBJECTS AND RELATED PREPARATION STUDIES

Week Subjects Required Materials
1 Introduction, principles and foundations of mechanics of materials Mechanics of Materials, 5th Edition, F. P. Beer, E. R. Johnston, Jr., J. T. DeWolf, D. Mazurek, McGraw-Hill, Chapter 1
2 Concepts of stress and strain, Hooke’s law Mechanics of Materials, 5th Edition, F. P. Beer, E. R. Johnston, Jr., J. T. DeWolf, D. Mazurek, McGraw-Hill, Chapter 2
3 Axial loading Mechanics of Materials, 5th Edition, F. P. Beer, E. R. Johnston, Jr., J. T. DeWolf, D. Mazurek, McGraw-Hill, Chapter 2
4 Torsion Mechanics of Materials, 5th Edition, F. P. Beer, E. R. Johnston, Jr., J. T. DeWolf, D. Mazurek, McGraw-Hill, Chapter 3
5 Simple bending Mechanics of Materials, 5th Edition, F. P. Beer, E. R. Johnston, Jr., J. T. DeWolf, D. Mazurek, McGraw-Hill, Chapter 4
6 Unsymmetric bending with normal force Mechanics of Materials, 5th Edition, F. P. Beer, E. R. Johnston, Jr., J. T. DeWolf, D. Mazurek, McGraw-Hill, Chapter 5
7 Elastic curve, integration method Mechanics of Materials, 5th Edition, F. P. Beer, E. R. Johnston, Jr., J. T. DeWolf, D. Mazurek, McGraw-Hill,, Chapter 9
8 Elastic curve, Castigliano’s method Mechanics of Materials, 5th Edition, F. P. Beer, E. R. Johnston, Jr., J. T. DeWolf, D. Mazurek, McGraw-Hill,, Chapter 9
9 Stability of columns, Euler buckling Mechanics of Materials, 5th Edition, F. P. Beer, E. R. Johnston, Jr., J. T. DeWolf, D. Mazurek, McGraw-Hill, Chapter 10
10 2-D state of stress, Mohr’s circle Mechanics of Materials, 5th Edition, F. P. Beer, E. R. Johnston, Jr., J. T. DeWolf, D. Mazurek, McGraw-Hill, Chapter 7
11 States of deformation Mechanics of Materials, 5th Edition, F. P. Beer, E. R. Johnston, Jr., J. T. DeWolf, D. Mazurek, McGraw-Hill, Chapter 7
12 Strain energy Mechanics of Materials, 5th Edition, F. P. Beer, E. R. Johnston, Jr., J. T. DeWolf, D. Mazurek, McGraw-Hill, Chapter 11
13 Failure hypotheses Mechanics of Materials, 5th Edition, F. P. Beer, E. R. Johnston, Jr., J. T. DeWolf, D. Mazurek, McGraw-Hill, Chapter 7
14 Combined loading Mechanics of Materials, 5th Edition, F. P. Beer, E. R. Johnston, Jr., J. T. DeWolf, D. Mazurek, McGraw-Hill, Chapter 8
15 Review of the Semester
16 Review of the Semester
Course Notes/Textbooks

Mechanics of Materials, 5th Edition, Ferdinand P. Beer, E. Russel Johnston, Jr., John T. DeWolf, David Mazurek, McGraw-Hill,

Suggested Readings/Materials

D. Gross, W. Hauger, J. Schröder, W. A. Wall, J. Bonet. Engineering Mechanics 2: Mechanics of Materials. Springer-Verlag Berlin Heidelberg 2011

M. İnan. Strength of Materials (çev. Sedat Sami). İTÜ Vakfı Yayınları, 2019. ISBN: 978-605-9581-15-8

 

EVALUATION SYSTEM

Semester Activities Number Weigthing
Participation
Laboratory / Application
Field Work
Quizzes / Studio Critiques
2
20
Portfolio
Homework / Assignments
Presentation / Jury
Project
Seminar / Workshop
Oral Exam
Midterm
1
40
Final Exam
1
40
Total

Weighting of Semester Activities on the Final Grade
3
60
Weighting of End-of-Semester Activities on the Final Grade
1
40
Total

ECTS / WORKLOAD TABLE

Semester Activities Number Duration (Hours) Workload
Course Hours
(Including exam week: 16 x total hours)
16
2
32
Laboratory / Application Hours
(Including exam week: 16 x total hours)
16
2
Study Hours Out of Class
14
2
28
Field Work
Quizzes / Studio Critiques
2
6
Portfolio
Homework / Assignments
Presentation / Jury
Project
Seminar / Workshop
Oral Exam
Midterms
1
20
Final Exams
1
26
    Total
150

 

COURSE LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS RELATIONSHIP

#
Program Competencies/Outcomes
* Contribution Level
1
2
3
4
5
1

To have knowledge in Mathematics, science, physics knowledge based on mathematics; mathematics with multiple variables, differential equations, statistics, optimization and linear algebra; to be able to use theoretical and applied knowledge in complex engineering problems

2

To be able to identify, define, formulate, and solve complex mechatronics engineering problems; to be able to select and apply appropriate analysis and modeling methods for this purpose.

3

To be able to design a complex electromechanical system, process, device or product with sensor, actuator, control, hardware, and software to meet specific requirements under realistic constraints and conditions; to be able to apply modern design methods for this purpose.

4

To be able to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in Mechatronics Engineering applications; to be able to use information technologies effectively.

5

To be able to design, conduct experiments, collect data, analyze and interpret results for investigating Mechatronics Engineering problems.

6

To be able to work effectively in Mechatronics Engineering disciplinary and multidisciplinary teams; to be able to work individually.

7

To be able to communicate effectively in Turkish, both in oral and written forms; to be able to author and comprehend written reports, to be able to prepare design and implementation reports, to present effectively, to be able to give and receive clear and comprehensible instructions.

8

To have knowledge about global and social impact of engineering practices on health, environment, and safety; to have knowledge about contemporary issues as they pertain to engineering; to be aware of the legal ramifications of engineering solutions.

9

To be aware of ethical behavior, professional and ethical responsibility; information on standards used in engineering applications.

10

To have knowledge about industrial practices such as project management, risk management and change management; to have awareness of entrepreneurship and innovation; to have knowledge about sustainable development.

11

Using a foreign language, he collects information about Mechatronics Engineering and communicates with his colleagues. ("European Language Portfolio Global Scale", Level B1)

12

To be able to use the second foreign language at intermediate level.

13

To recognize the need for lifelong learning; to be able to access information; to be able to follow developments in science and technology; to be able to relate the knowledge accumulated throughout the human history to Mechatronics Engineering.

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest